Communications to the Editor

Osmylation of C₇₀: Reactivity versus Local Curvature of the Fullerene Spheroid

Joel M. Hawkins,* Axel Meyer, and Michael A. Solow

Department of Chemistry University of California, Berkeley Berkeley, California 94720

Received March 22, 1993

Unlike C_{60} , the higher fullerenes¹ and carbon nanotubes² contain carbons with different degrees of pyramidalization corresponding to different degrees of local curvature of the fullerene spheroid. In the simplest case, C₇₀ contains eight types of C-C bonds, each positioned differently on the oblong fullerene surface.³ Here, we report an analysis of the regiochemistry of the osmylation of \mathbf{C}_{70} where the observed ratio of isomeric 1:1 adducts 1, 2, 3, and 4 (2.1:1.0:<0.1:<0.1) demonstrates greater kinetic reactivity at sites of greater local curvature, rather than at sites of greater bond order. These results complement the thermodynamically controlled regiochemistry observed by Balch and co-workers.4

Osmylation^{5,6} of C₇₀ with 0.75 equiv of OsO₄ in pyridine/ toluene at 0 °C yielded two isomers of $C_{70}(OsO_4py_2)$ which were cleanly separable by HPLC on silica gel (9% pyridine in toluene). The pyridine ligands were exchanged for 4-tert-butylpyridine to increase solubility for NMR analysis. Both isomers showed cleanly resolved ¹³C and ¹H NMR spectra, which are summarized in Table I (see also supplementary material).⁷ ¹H NMR recorded before chromatography showed that the major and minor isomers form in a 2.1:1 ratio. No other isomers were detectable to a limit of 5%.

Within the limits of detection by ¹H and ¹³C NMR, C₆₀ adds OsO4 to the fusion of two six-membered rings.^{8,9} Assuming that C_{70} also adds OsO₄ to 6–6 ring fusions, four C_{70} (OsO₄L₂) isomers

Diederich, F.; Whetten, R. L. Acc. Chem. Res. 1992, 25, 119.
Ebbesen, T. W.; Ajayan, P. M. Nature 1992, 358, 220.

(3) Johnson, R. D.; Meijer, G.; Salem, J. R.; Bethune, D. S. J. Am. Chem. Soc. 1991, 113, 3619.

Science 1991, 252, 312.

(6) Hawkins, J. M. Acc. Chem. Res. 1992, 25, 150.

(8) Hawkins, J. M.; Loren, S.; Meyer, A.; Nunlist, R. J. Am. Chem. Soc. 1991, 113, 7770.

Table I.	Number of	of Indepe	ndent	Carbons	and	Protons i	n
C70OsO4(4-tert-buty	lpyridin	e) ₂ Isc	mers			

isomer	trivalent fullerene carbons (intensity)	<i>C</i> -0	sets of 4- <i>tert</i> -butylpyridine carbons and protons		
major	1 (1C), 32 (2C), 1 (3C)	2	2		
minor	4 (1C), 30 (2C), 1 (4C)	1	$\overline{1}$		
1	2 (1C), 33 (2C)	2	2		
2	4 (1C), 32 (2C)	1	1		
3	68 (1C)	2	2		
4	6 (2C), 14 (4C)	1	1		

are possible (Figure 1A). In these four isomers, the osmyl groups are positioned differently with respect to the mirror planes of C_{70} such that they each correspond to a characteristic number of symmetry independent carbons and protons (Table I). Comparing the NMR data for the two purified isomers with the number of possible peaks for isomers 1-4 (Table I), the major and minor isomers correspond to 1 and 2, respectively, where the spectra of both isomers contain one pair of coincident fullerene carbon peaks. Both isomers show five pyrene-type carbons¹ in the 127–133 ppm range, as expected for C_s -symmetric structures.

Resubmission of purified 1 and 2 to the osmylation conditions gives two different sets of C₇₀(OsO₄py₂)₂ isomers according to HPLC. Isomer 1 gives six 2:1 adducts, isomer 2 gives seven 2:1 adducts, and four of the $C_{70}(OsO_4py_2)_2$ isomers overlap between the two sets. This is consistent with the second osmylation of C_{70} occurring at a pyracylene-type position (as found for the first additions), with proximate sites being sterically blocked by the first osmyl group (as found for C_{60}). That is, isomer 1 could give seven 2:1 isomers and isomer 2 could give eight 2:1 isomers, with four of the $C_{70}(OsO_4py_2)_2$ isomers coinciding between the two sets (Figure 1B,C). The formation of distinct sets of C₇₀(OsO₄ $py_2)_2$ isomers from 1 and 2 establishes that the C_{70} osmate esters do not equilibrate under the reaction conditions; thus osmylation is kinetically controlled.

The observed kinetically controlled regioselectivity for the osmylation of C_{70} agrees qualitatively with ab initio calculations on C₇₀ in that osmylation occurs at bonds categorized as double bonds (corresponding to isomers 1 and 2), but not at bonds designated as single bonds or intermediate (aromatic) bonds (corresponding to isomers 4 and 3, respectively).¹⁰ However, the ratio of isomers 1 and 2(2.1:1) does not quantitatively correspond to the relative calculated bond orders for the respective bonds in C_{70} , 1.66 and 1.74,¹¹ in that the bond with lower calculated bond order is more reactive. (Bonds corresponding to isomers 1 and 2 are each represented 10 times in C_{70} .) Three calculated C_{70} structures show that major isomer 1 corresponds to a longer bond in C_{70} than minor isomer 2,¹⁰⁻¹² and the crystal structure of a C_{70} clathrate confirms these calculations.^{13,14} In contrast to bond lengths and bond orders, the degree of local curvature of the C_{70} spheroid, as described by the $\sigma-\pi$ interorbital angles¹⁵ of an ab

⁽⁴⁾ Under conditions where regiochemistry is controlled by the thermo-dynamics of both reaction and crystallization, C_{70} adds one or two 1r(CO)-Cl(PR₃)₂ moieties at sites analogous to osmate ester isomer 1. C₇₀{Ir(CO)-Cl(PPhMe₂)₂)₂ appears to exist as several equilibrating regioisomers in solution. Balch, A. L.; Catalano, V. J.; Lee, J. W.; Olmstead, M. M.; Parkin, S. R. J. Am. Chem. Soc. 1991, 113, 8953. Balch, A. L.; Lee, J. W.; Olmstead, M. M. Angew. Chem., Int. Ed. Engl. 1992, 31, 1356. (5) Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Loren, S.; Hollander, F. J.

⁽⁷⁾ C₇₀(OsO₄)(4-*tert*-butylpyridine)₂, major isomer (1): ¹³C NMR (125 MHz, 17.4 mg in 0.45 mL of CDCl₃) δ 166.01 (L), 165.89 (L), 157.68 (2C), 155.03 (2C), 151.57 (2C), 151.46 (2C), 151.21 (2C), 151.19 (2C), 150.81 (2C), 150.35 (2C), 150.30 (2C), 149.84 (2C), 149.66 (L), 149.44 (L), 149.39 (2C), 149.34 (2C), 149.72 (2C), 149.84 (2C), 148.86 (2C), 148.54 (2C), 148.99 (2C), 147.53 (2C), 147.51 (2C), 147.51 (2C), 147.46.83 (2C), 148.54 (2C), 145.44 (2C), 143.76 (3C), 143.57 (2C), 143.49 (2C), 141.75 (2C), 141.32 (2C), 138.15 (2C), 133.31 (2C), 132.74 (2C), 132.24 (2C), 131.58 (2C), 131.52 (2C), 122.88 (L), 122.74 (L), 102.15 (C–O), 100.92 (C–O), 35.19 (L), 35.08 (L), 30.55 (L), 30.49 (L). Minor isomer (2): 13 C NMR (100 MHz, 9.3 mg in 0.45 mL of CDCl₃) δ 165.86 (L), 149.67 (L), 149.41 (2C), 147.89 (2C), 147.89 (2C), 147.89 (2C), 147.24 (2C), 147.89 (2C), 147.89 (2C), 147.89 (2C), 147.84 (2C), 145.88 (2C), 147.18 (2C), 146.71 (1C), 146.61 (2C), 146.33 (2C), 145.88 (2C), 145.44 (2C), 145.03 (2C), 145.03 (2C), 145.03 (2C), 145.03 (2C), 147.89 (2C), 147.89 (2C), 145.80 (2C), 145.40 (2C), 147.80 (2C), 147.80 (2C), 145.80 (2C), 147.18 (2C), 147.80 (2C), 145.88 (2C), 147.18 (2C), 147.80 (2C), 145.88 (2C), 145.44 (2C), 145.03 (2C), 145.44 (2C), 145.03 (2C), 145.44 (2C), 145.03 (2C), 145.45 (2C), 145.47 (2C), 147.18 (2C), 146.71 (1C), 146.61 (2C), 146.33 (2C), 145.88 (2C), 145.44 (2C), 145.03 (2C), 145.48 (2C), 145.47 (2C), 155.03 (2C), 151.57 (2C), 151.46 (2C), 151.21 (2C), 151.19 (2C), 150.81 14.39 (2C), 147.59 (2C), 147.22 (2C), 147.12 (2C), 147.16 (2C), 146.71 (1C), 146.61 (2C), 146.33 (2C), 145.88 (2C), 145.48 (4C), 145.03 (2C), 144.82 (2C), 144.69 (2C), 144.07 (2C), 143.90 (2C), 143.24 (2C), 142.92 (2C), 141.82 (2C), 132.60 (2C), 132.46 (2C), 131.02 (2C), 130.17 (2C), 127.18 (2C), 122.75 (L), 98.56 (C–O), 35.10 (L), 30.50 (L). L denotes and for the bridge order of the trade of the bridge coordinated 4-tert-butylpyridine carbons. The intensities of the L and C-O signals are not listed because the relaxation times of these carbons significantly differ from those of the fullerene-type carbons.

⁽⁹⁾ Hawkins, J. M.; Meyer, A.; Lewis, T. A.; Bunz, U.; Nunlist, R.; Ball, G. E.; Ebbesen, T. W.; Tanigaki, K. J. Am. Chem. Soc. **1992**, 114, 7954.

⁽¹⁰⁾ Based upon bond lengths calculated at the SCF HF level: Scuseria, G. E. Chem. Phys. Lett. 1991, 180, 451. The 6-5 ring fusions are categorized as single bonds, except those within the five six-membered (aromatic) rings (11) Baker, J.; Fowler, P. W.; Lazzeretti, P.; Malagoli, M.; Zanasi, R.

Chem. Phys. Lett. 1991, 184, 182.

Raghavachari, K.; Rohlfing, C. M. J. Phys. Chem. 1991, 95, 5768.
Roth, G.; Adelmann, P. J. Phys. J 1992, 2, 1541.

 ⁽¹⁴⁾ The error limits on bond lengths of C₇₀ measured by electron diffraction preclude quantitative analysis. McKenzie, D. R.; Davis, C. A.; Cockayne, D. J. H.; Muller, D. A.; Vassallo, A. M. Nature 1992, 355, 622.
(15) POAV analysis: Haddon, R. C.; Scott, L. T. Pure Appl. Chem. 1986, 58, 137. For reference, σ-π interorbital angles are 90° for graphite and 109.5° for diamond.

Figure 1. (A) Representation of C_{70} showing the four types of 6-6 ring fusions (bold) corresponding to $C_{70}(OsO_4L_2)$ isomers 1 (C_s), 2 (C_s), 3 (C_1), and 4 (C_{2v}). Dashed lines indicate two of the six mirror planes of C_{70} ; five-membered rings are blackened. (B) $C_{70}(OsO_4L_2)$ isomer 1 with the position of osmylation marked with an oval and the mirror plane indicated by a dashed line. Bold bonds indicate independent pyracylene-type positions with sights corresponding to sterically accessible $C_{70}(OsO_4L_2)_2$ isomers lettered a-g. (C) Analogous representation of $C_{70}(OsO_4L_2)$ isomer 2. $C_{70}(OsO_4L_2)_2$ isomers 1a, 1b, 1d, and 1g are equivalent to 2a, 2g, 2f, and 2d, respectively.

initio calculated structure,¹² agrees well with the observed regioselectivity. Isomers 1, 2, 3, and 4 correspond to osmylation at bonds between pairs of carbons with $\sigma-\pi$ interorbital angles of 102.0 and 101.9°, 101.5 and 101.5°, 100.0 and 98.9°, and 98.9 and 98.9°, respectively. Thus, osmylation occurs mainly at the bond between the highly pyramidalized carbons, to a lesser extent at the bond between carbons pyramidalized like those in C₆₀ (101.6°), and little or not at all at the bond between the less pyramidalized carbons, giving isomers $1 > 2 \gg 3$ and 4.

The O-bonded carbons of osmylated C_{60} are nearly tetrahedral.⁵ Greater reactivity at the more pyramidalized carbons of C_{70} corresponds to greater strain relief as the fullerene carbons become four-coordinate. Crystalline adducts of C_{70} with $Ir(CO)Cl(PR_3)_2$ moieties similarly show reaction at positions which require the least distortion of the carbon cluster.⁴ The regioselectivity observed with C_{70} suggests that the higher fullerenes may show more discrete chemistry than suggested by their complex structures. Our recent kinetic resolutions of the chiral fullerenes C_{76} and C_{84} by asymmetric osmylation are consistent with this prediction.¹⁶ Extrapolating from C_{70} to carbon nanotubes, the osmium-mediated oxidation at sites of greatest local curvature in C_{70} , observed here, provides a model for the lead-mediated oxidation of carbon nanotubes at the tips, proposed by Ajayan and Ijjima.¹⁷

Acknowledgment. J.M.H. is grateful to the National Science Foundation (Presidential Young Investigator Award, CHE-8857453), the Camille and Henry Dreyfus Foundation (Teacher-Scholar Award), the Merck Sharp & Dohme Research Laboratories, the Shell Oil Company Foundation, Xerox Corporation, Monsanto Company, Hoffmann-La Roche, Inc., Chevron Research and Technology Company, and Eli Lilly and Company for financial support.

Supplementary Material Available: ${}^{13}C$ NMR spectra of C₇₀-OsO₄(4-*tert*-butylpyridine)₂ isomers 1 and 2 (13 pages). Ordering information is given on any current masthead page.

⁽¹⁶⁾ Hawkins, J. M.; Meyer, A. Science 1993, 260, 1918. Hawkins, J. M.; Nambu, M.; Meyer, A. Manuscript in preparation.

⁽¹⁷⁾ Ajayan, P. M.; Iijima, S. Nature 1993, 361, 333.